2.1. СТРУКТУРНЫЕ УРАВНЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ.
ЗАКОНЫ КИРХГОФА
Структура электрической цепи накладывает ограничения на распределение токов и напряжений на отдельных ее элементах. При расчете цепи информация о структуре отражается в структурных уравнениях, выражающих первый и второй законы Кирхгофа, которые определяют:
1) баланс токов в сечениях цепи — ; 2) баланс напряжений в контурах — . |
Входящие в эти уравнения величины суммируются алгебраически — токи ветвей сечения, направления отсчета которых совпадают с ориентацией сечения, положительны, а не совпадающие с ней — отрицательны. Также и напряжения, направление отсчета которых совпадают с направлением обхода контура, берутся со знаком “плюс”, а противоположные ему — “минус”.
Первый закон Кирхгофа часто применяют к сечениям, охватывающим один узел. Он формулируется как равенство нулю всех токов, сходящихся в узле цепи. Второй закон Кирхгофа записывают с заменой напряжений на источниках значениями ЭДС этих источников:
S uk = S ek. |
Такая формулировка определяет равенство алгебраической суммы падений напряжения на остальных элементах контура сумме ЭДС источников, действующих в этом контуре. При этом со знаком “плюс” в обеих частях равенства учитывают величины, совпадающие с направлением обхода контура.
Использование уравнений Кирхгофа для расчета цепи требует формирования независимой системы уравнений. Наиболее простой путь заключается в записи уравнений первого закона Кирхгофа для всех узлов цепи, кроме одного (любого). В связной цепи с q узлами он приводит к q – 1 независимому уравнению. Другая возможность состоит в использовании главных сечений, каждое из которых включает лишь одну из ветвей дерева цепи. Так как дерево содержит q – 1 ветвь, система независимых уравнений первого закона Кирхгофа, записанная для главных сечений, включает также q – 1 уравнение. Независимость этих уравнений определяется тем, что в каждом из них содержится один ток, не входящий в другие уравнения — ток ветви дерева.
При записи уравнений второго закона Кирхгофа при выборе независимых контуров в планарной цепи (все ветви которой можно изобразить на плоскости без перекрещиваний) проще всего использовать элементарные ячейки, образованные ветвями цепи. Так, для мостовой цепи, граф которой изображен на рис. 1.8, б, такой путь приводит к контурам , ‚ и ƒ. В общем случае в качестве независимой системы используются главные контуры, каждый из которых содержит только одну из ветвей связи.