К плану данной лекции К следующему вопросу

7.1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИНУСОИДАЛЬНЫХ СИГНАЛОВ

Синусоидальные токи и напряжения наиболее распространены из всех переменных во времени сигналов. Они легко генерируются в широком диапазоне частот, а их основные характеристики — амплитуду и частоту —  удобно измерять и регистрировать. Расчет динамических режимов электрических цепей, находящихся под действием переменных источников e(t) и J(t), включающих емкости и индуктивности — динамические элементы, сложнее, чем анализ резистивных цепей. Общий подход к расчету, основанный на применении компонентных уравнений и уравнений Кирхгофа сохраняется. Однако уравнения цепи теперь будут дифференциальными, так как в них входят связи между токами и напряжениями на динамических элементах: uL = L di/dt; iC = C du/dt. Тем не менее, анализ синусоидальных режимов можно проводить на более простой математической основе, без составления и интегрирования дифференциальных уравнений. Результаты такого анализа могут служить базой для исследования цепей при воздействии сигналов более сложной формы, как периодических, так и непериодических (см. гл. 11).

Синусоидальный ток характеризуется амплитудой Im и периодом T (рис. 7.1).

Рис. 7.1

При произвольном выборе начала отсчета времени его математическое выражение имеет вид i(t) = Im sin (wt + yi), где w — круговая (угловая) частота, w = 2pf (f  — циклическая частота, определяющая число периодов колебаний за единицу времени), начальная фаза yi — аргумент синуса, отсчитываемый от ближайшей точки перехода через нуль 0' в положительном направлении. Аналогичны выражения для синусоидального напряжения u, ЭДС e, тока источника J:

u = Um sin (wt + yu);   e = Em sin (wt + ye);   J = Jm sin (wt + yj)

Определение основных характеристик синусоидального сигнала иллюстрируется Задачей 6.1.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям:

Приведенное общее выражения действующего значения справедливо также и для периодических сигналов, отличных по форме от синусоидальных (см. п. 11.6).

В линейной цепи, находящейся достаточно долго под действием синусоидальных источников одной частоты f с неизменными амплитудами, токи и напряжения на всех участках будут иметь также синусоидальную форму с той же частотой, так как при протекании по катушке синусоидального тока iL(t) напряжение на ней uL = L di/dt также синусоидально, поскольку синусоидальные функции сохраняют свою форму при дифференцировании. Аналогично связаны напряжение и ток конденсатора. При суммировании синусоидальных токов и напряжений на отдельных участках цепи в уравнениях Кирхгофа их форма также не изменяется.

Поэтому анализ синусоидального режима в цепи сводится к определению амплитуд и начальных фаз отдельных токов и напряжений, которым отвечают частные решения дифференциальных уравнений, описывающих процесс. Их можно найти, даже не составляя эти дифференциальные уравнения.

Токи и напряжения на различных участках цепи имеют различные начальные фазы — компонентные соотношения для индуктивности и емкости выражают то, что токи и напряжения на них не совпадают по фазе. Поэтому при анализе цепи возникает необходимость суммирования сигналов с различными начальными фазами.

Разность фаз двух синусоидальных сигналов одной частоты y1 – y2 = 0 называется их фазовым сдвигом. При y1 > y2 (q > 0) говорят, что ток i1 опережает по фазе ток i2 (рис. 7.2, б), и наоборот, i2 отстает по фазе от тока i1. При q = 0 сигналы совпадают по фазе, одновременно достигая максимума и переходя через нуль. Два сигнала с q = p находятся в противофазе, сигналы с q = ± p/2 находятся в квадратуре.

Рис. 7.2

Если сходящиеся в узле (рис. 7.2, а) синусоидальные токи имеют фазовый сдвиг i1(t) = Im1 sin (wt + y1), i2(t) = Im2 sin (wt + y2), то для их суммы i(t) = Im sin (wt + y) = i1(t) + i2(t) нахождение амплитуды Im и начальной фазы y по временным зависимостям громоздко (рис. 7.2, б).

В цепях синусоидального тока уравнения Кирхгофа нельзя применять к амплитудам (или действующим значениям) токов и напряжений, не совпадающих по фазе. Алгебраическое суммирование токов и напряжений в соответствии с законами Кирхгофа возможно лишь для мгновенных значений i или u.


Дальше
Обратно к плану лекции
Hosted by uCoz